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When a material is subjected to an alternating stress field, there are temperature
fluctuations throughout its volume due to thermoelastic effects. The resulting irreversible
heat conduction leads to entropy production which, in turn, is the cause of thermodynamic
damping. An analytical investigation of the entropy produced during a vibration cycle due
to the reciprocity of temperature rise and strain yielded the change of the material damping
factor as a function of shape and magnitude of the porosity of the material. A
homogeneous, isotropic, elastic bar of cylindrical shape is considered with uniformly
distributed ellipsoidal cavities under alternating uniform axial stress. The analytical
calculation of the dynamic characteristics of the porous structure yielded the change of the
material damping factor as a function of shape and magnitude of the porosity of the
material. A homogeneous, isotropic, elastic bar of cylindrical shape is considered with
uniformly distributed ellipsoidal cavities under alternating uniform axial stress. The
analytical calculation of the dynamic characteristics of the porous structure yielded the
damping factor of the bar and the material damping factor. Experimental results on porous
metals are in good correlation with analysis.
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1. INTRODUCTION

It is well known that the porosity in a material is related to the decrease in its strength.
The evaluation of the effect of inclusions on the strength of a material, especially in relation
to fatigue and brittle fracture, is a very important consideration in engineering design.

Damping is also a very important material property when dealing with vibrating
structures from the point of view of vibration isolation in many applications: bearings,
filters, aircraft parts, and generally structures made of porous materials. For a material
there are many damping mechanisms [1], most of which contribute significantly to the total
damping only over a certain narrow range of frequency, temperature or stress.
Thermodynamic damping is due to the irreversible heat conduction in the material.

Thermodynamic damping was first studied by Zener [2], for transverse vibrations of a
homogeneous Euler–Bernoulli beam. The case of a general homogeneous medium was
investigated by Biot [3], Lucke [4], Deresiewicz [5], Alblas [6, 7] and Gillis [8], while the
cases of homogeneous plates, shells and Timoshenko beams were investigated by Tasi [9],
Tasi and Herrmann [10], Shieh [11–13] and Lee [14]. The connection between the second
law of thermodynamics and thermodynamic damping was also discussed by Goodman et
al. [15] and by Landau and Lifshitz [16]. Armstrong [17] calculated the thermodynamic
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damping of a one-dimensional composite consisting of successive slabs assuming identical
thermal conductivity and specific heat for all slabs. Kinra and Milligan [18] presented a
general methodology for calculating thermodynamic damping in homogeneous or
composite materials. Milligan and Kinra [19] extended the calculation to a single linear
inclusion in an unbounded matrix. The case of an Euler–Bernoulli beam was examined
by Bishop and Kinra [20]. Bishop and Kinra [21], also investigated the thermodynamic
damping of a laminated beam in flexure and extension, and further [22] calculated the
thermodynamic damping of an N-layer metal matrix composite in Cartesian, cylindrical
and spherical co-ordinates systems with perfect or imperfect thermal interfaces. Milligan
and Kinra [23] calculated the thermodynamic damping of a fiber reinforced metal–matrix
composite.

In this paper the thermodynamic damping of a homogeneous, isotropic, elastic bar with
uniformly distributed ellipsoidal cavities under alternating uniform axial stress is
calculated analytically and determined experimentally.

2. ANALYTICAL MODEL

The thermomechanical behaviour of a linear, isotropic and homogeneous thermoelastic
medium is described by the following equations: the first law of thermodynamics [24],

r1u/1t= sij1eij /1t− qi,i; (1)

Newton’s law of motion–conservation of linear momentum [25],

sji,j = r12ui /1t2; (2)

the kinematic equations of linear thermoelasticity-strain displacement relations [26],

eij =1/2(ui,j + uj,i ); (3)

the second law of thermodynamics [24],

r1s/1t+(qi /T)i e 0; (4)

the thermoelastic Hooke’s law [26],

sij =E/(1+ n)(eij + n/(1−2n)ekkdij )−E/(1−2n)a1dij (T−T0); (5)

the Fourier law of heat conduction [27],

qi =−kT,i . (6)

Here sij is the stress tensor, eij is the strain tensor, ui is the displacement vector, n is the
Poisson ratio, E is the Young modulus, r is the density, s is the entropy produced per unit
mass, T is the absolute temperature, T0 is the thermodynamic equilibrium temperature, qi

is the heat flux vector, u is the internal energy per unit mass, dij is the Kronecker delta,
k is the thermal conductivity, a1 is the coefficient of thermal expansion, and the indices
i,j, and k each have values of 1, 2, and 3.

From these equations the relation between temperature and strain is [25]

T,ii −(rc/k)1T/1t=[Ea1/k(1−2n)]T1ekk /1t. (7)

In this equation the term (T1ekk /1t) couples the temperature field with the mechanical field
and leads to a non-linear problem. One can replace T on the right side of equation (7)
by the thermodynamic equilibrium temperature T0, because the fluctuations in temperature
caused by reasonable alternating stress levels are very small. This assumption linearizes
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the differential equation. Equation (7) shows that, for an isotropic material [28],

(1T/1skk )s =−Ta1/C, (8)

where C is the specific heat per unit volume. Since the temperature and mechanical fields
are coupled, inhomogeneities in stress and material properties result in inhomogeneities
in temperature. Heat is conducted from the high temperature regions to the low
temperature regions and, as consequence of the second law of thermodynamics, entropy
is produced which is manifested as a conversion of useful mechanical energy into heat.

When the second law of thermodynamics is applied to heat conduction in solids, it
results in the calculation of the flow of entropy produced per unit volume, ṡp =dsp /dt due
to irreversible heat conduction [29, 30]:

ṡp = k/(rT2
0 )(1T/1r)2, (9)

The elastic energy Wel stored per unit volume and cycle of vibration is [31]

Wel =(1/2E)(s2
rr + s2

zz + s2
uu )− (n/E)(srrszz + szzsuu + suusrr ). (10)

The entropy Ds produced per unit volume and cycle of vibration is

Ds=GT

ṡp dt, (11)

where Tp is the period of vibration.
From the Gouy–Stodola theorem [32–34] the mechanical energy W� dissipated per unit

of volume and per unit of time is

W� = rT0 ṡp , (12)

The mechanical energy DW dissipated per cycle of vibration in a medium of volume V
is

DW= rT0 gV

Ds dV. (13)

Equation (13) relates the entropy produced in the material during one cycle of vibration
to the elastic energy dissipated.

Finally, the material damping factor g is defined as the energy dissipated throughout
the medium in one cycle, normalized in respect to the maximum elastic energy stored
during that cycle [35]:

g=DW/4p gV

We1 dV. (14)

The modal damping factor z is defined [35] as

z=zg2(4+ g2). (15)

Equations (1)–(15) show the relationships between the stress field and the material or
the modal damping factor of the bar due to the thermoelastic effect.
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3. THE ELLIPSOIDAL CAVITY IN AN ISOTROPIC MEDIUM

It has been observed in problems of materials with cavities that qualitative results can
be obtained by using simple geometries for which analytical solutions are possible. Such
analysis yields adequate results for the effect of the concentration of the cavities and
additionally it accounts for the effect of their true shape.

To improve understanding of the mechanism of energy conversion and the relation of
the cyclic stresses to the vibration damping, analytical and experimental work on porous
metals had been carried out. The material cavity, shown in Figure 1, was modelled as a
triaxial ellipsoidal cavity with semi-axes a, b and c in the center of an elastic, isotropic and
homogeneous unbounded medium. It is assumed that the body at infinity is in a uniform
state of stress, the principal directions of which are parallel to the axes of the cavity. The
Cartesian co-ordinate axes are chosen to be coincident with the axes of the ellipsoid. Then
the stress field at infinity is characterized by

sxx = s1, syy = s2, szz = s3, txy = tyz = tzx =0, (16)

where sxx , syy and szz , are arbitrarily prescribed principal stresses. The problem to be solved
at present consists of the determination of the normal stress distribution induced by the
given loading at infinity. The surface of the cavity must be free of boundary stresses. In
the absence of body forces, the problem is equivalent to establishing a displacement field
[u, v, w], which satisfies the equations of equilibrium (16), and gives rise to an associated
field of stress

[Du, Dv, Dw]−1/(2n−1) grad e=0, e=div[u, v, w], (17)

sxx =2nG/(1−2n) e+2G1u/1x, . . . , tyz =G(1w/1y+ 1v/1z), . . . , (18, 19)

which conforms to conditions (16) at infinity, while leaving the internal boundary of the
ellipsoidal cavity free from the surface tractions. In order to render the boundary
conditions for the surface of the cavity manageable curvilinear co-ordinates are introduced.

According to Sadowsky and Sternberg [36], the shape of the internal boundary suggests
the use of ellipsoidal co-ordinates. The corresponding co-ordinate transformation, which
relates the Cartesian co-ordinates x, y and z to the ellipsoidal co-ordinates ai (i=1, 2, 3)
is most conveniently introduced with the aid of Jacobian elliptic functions sn ai , cn ai , and

Figure 1. The ellipsoidal cavity in Cartesian co-ordinates.
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dn ai (i=1, 2, 3) [36]. Let

s1 =1/(k sn a1), s2 =1/dn (a2, k'), s3 = sn a3, (20a)

c1 =dn a1/(ik sn a1), c2 =−ik' sn (a2, k')/dn (a2, k'), c3 = cn a3, (20b)

d1 = cn a1/(i sn a1), d2 = k' cn (a2, k')/dn (a2, k'), d3 =dn a3. (20c)

The co-ordinate transformation from ellipsoidal to cartesian co-ordinates may now be
written as

x= kms1s2s3, y=−(km/k')c1c2c3, z=im/(kk')d1d2d3, (21a–c)

where the moduli k, and k' and the parameter m are related to the semi-axes of the
ellipsoidal cavity a, b and c as follows:

k=z[(a2 − b2)/(a2 − c2)], k'=z(1− k2), m=z(a2 − b2), (22)

and where, also without loss of generality, a, b and c are assumed to be ordered by

0Q cQ bQ a. (23)

For

0Q a1 EK, 0E a2 EK', 0E a3 EK (24)

where 4K and 2iK' are the real and imaginary periods corresponding to the modulus k,
the first octant of the Cartesian space is covered. If a0

1 is chosen such that

s0
1 0 1/(k sn a0

1 )= a/m, (25)

it is confirmed that the ellipsoid a1 = a0
1 has semi-axes a, b and c and coincides with the

surface of the cavity, which accounts for the form of equations (22).
The complete solution of the stress problem in ellipsoidal co-ordinates is now extracted

directly from reference [36]; see equations (36), (42–46), (49) and (50, 51) on pp. 152–154.
In order for these equations to be applicable, several intermediate steps must be taken.

For each point (x, y, z) in the body, equation (21) are solved for the Jacobian elliptic
functions sn ai , cn ai , dn ai . Next, from known values of Jacobian elliptic functions sn ai ,
cn ai , and dn ai the problem of finding the arguments ai , i=1,2,3, 10 must be solved. The
solution of this problem is achieved by inverse interpolation in the tables of Jacobian
elliptic functions [37] and Chebychev polynomials of fourth degree [38]. Then, with known
values of k and k', the complete elliptic integrals K and E are found, from reference [39,
17.3.34, 17.3.36, 17.6.4], to yield the quotient E/K. The zeta functions of Jacobi are then
found by interpolation for known values of moduli and arguments ai , i=1, 10. The
complete elliptic integral E can now be found from the following equation [39].

E=Z+ a E/K. (26)

The complete procedure is presented in reference [40].
One can now define

0Q r1 = b/aQ 1, 0Q r2 = c/bQ 1. (27)

As the square 0E r1 Q 1, 0E r2 E 1 is traversed, the ellipsoidal cavity assumes all possible
shapes. The invariants of the stress tensor thus calculated are applied to equations
(10)–(15) to yield analytical values for damping. Specifically, the normal stresses yield the
hydrostatic stress skk [26]. For a loading assumed to be time-harmonic, the stress is
harmonic s= s0 eivt and the heat rate q(r,t) generated due to the thermoelastic effect is

q(r,t)=−a1T0(1skk /1t)=−a1T0 iv eivtskk0, (28)
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where the subscript zero is the stress designated amplitude, v is the frequency of oscillation
of the external load and t is the time. Under this assumption the transient heat conduction
equation with heat generation in cylindrical co-ordinates can be written in the form

12T/1r2 +1/r1T/1r+ 12T/1z2 + q(r,t)/k= adiff1T/1t, (29)

where q(r, t) is the rate of heat generation term, k is the thermal conductivity and adiff is
the thermal diffusivity. Since skk is time-harmonic and linearity is assumed, the fluctuations
in T will necessarily be time-harmonic; therefore T can be assumed to be

T(r,t)=Tm (r) eivt. (30)

Equations (28–30) yield

12Tm /1r2 +1/r1Tm /1r+ 12Tm /1z2 − a1T0 iv eivtskk /k= adiff1Tm /1t. (31)

Because Tm is a complex number, Tm =Re{Tm}+i Im{Tm}, equation (31) yields the
following two equations:

12 Re(Tm )/1r2 +1/r1 Re(Tm )/1r+ 12 Re(Tm )/1z2 +v/adiff Im(Tm )=0, (32)

12 Im(Tm )/1r2 +1/r1 Im(Tm )/1r+ 12 Im(Tm )/1z2 −v/adiff Re(Tm )= a1T0vskk /k. (33)

The temperature field is derived as the solution of differential equations (32, 33) and the
boundary conditions

1T/1r=0, at r=R2, z=0,H/2, (34)

where R2 is the outer radius of the cylinder and H=2R2 is the height of the cylinder.
It is assumed that the flow of heat from the solid towards the cavity is zero, because the
heat transfer from the solid to the cavity can be neglected due to the low thermal
conductivity and the limited thermal capacity. The temperature field is computed as the
solution of equations (32) and (33) with the boundary conditions (34). This was done by
replacing the system of equations (32) and (33) by a system of finite difference equations
and solving the resulting system of linear equations, including the boundary conditions.

The mechanical energy DW dissipated in the solid per cycle of vibration is derived from
equations (9), (11), (13), with temperatures calculated from the solution of equations
(32)–(34) above. Since the temperatures Ti,j have been computed by a finite difference
method at a lattice of points (i, j), the integration is replaced with summation, by using
the trapezoidal rule:

DW= kpTp /2T0$H/2/dr s
n

i=1

(Ti+1,j −Ti−1,j )2ri,j +dr/dz s
n

i=1

(Ti,j+1 −Ti,j−1,)2ri,j% (35)

where Tp =v/2p is the period of vibration and dr and dz are the mesh spacings in the
r and z axes.

By using the relationships among the invariants of the stress tensor, the energy of elastic
deformation Wel stored per unit volume and cycle is derived from equation (10) as

Wel =(1/2E)s2
kk −(1+ n)/E(srrszz + szzsuu + suusrr ). (36)

The total energy elastic Welastic of elastic deformation per cycle in the volume V of the
solid is

Welastic =gV

We1 dV (37)
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Figure 2. Hydrostatic stress as a function of the shape ratio p2 = c/b; analytical results. Shape ratio of cavity,
p1 = b/a=0·99.

Assuming that the stress concentration diminishes as one moves away from the ellipsoidal
cavity, one can superpose the stress fields in a lattice of ellipsoidal cavities and integrate
over the volume, thus deriving the damping factor from equations (14) and (35)–(37).

A numerical application was performed for cavity spacing 2R2 =0·0016 m and H=2R2.
The lattice spacing of the cavities was assumed to be uniform, H=2R2. For different shape
ratios r2 = c/b, r1 = b/a=0·999, load at infinity S=1 N/m2 and the same stress
oscillation frequency v, the hydrostatic stress at point B shown in Figure 1 and
corresponding to x, y=0, y= b, is plotted against the shape ratio c/b in Figure 2. It can
be seen that skk increases exponentially with decreasing c/b, as anticipated due to the stress
concentration. From reference [31, article 122, p. 359], the following values are anticipated
for a spherical cavity, which corresponds to r1 = r2 =1:skk =2·59, sz =2·07. Additionally,
the stress distribution is independent of the absolute values of the semi-axes a and b taken
on the axes x and y respectively, given of course that the load at infinity is parallel to the
z-axis of the cylindrical co-ordinate system. For different void ratios Void
(%)= (V1/V2)=2/3 a b c/R3

2 100, occurring from different shape ratios r2 = c/b, as in
Figure 2 the analytically calculated material thermodynamic damping factor (MDF) is
plotted against Void in Figure 3. It is apparent that damping increases with decreasing
shape ratio r2 = c/b, and consequently with increasing stress concentration as expected.
Damping also increases with increasing Void.

4. EXPERIMENTAL STUDY

On the basis of the analytical results shown in Figures 2 and 3, it is apparent that the
damping change due to the existence of porosity in the metal will be substantial. To test
this hypothesis, changes in modal damping were evaluated experimentally. Tests have been
performed on four metallic bars made out of 316-L stainless steel with varying porosity.
The porous material was a product of Mott Metallurgical Corporation with the
commercial designation: Mott porous 316L SS sheets, series 1100 with Micron Grades 0·5,
40 and 100 for porosities 25%, 50% and 60% respectively

The physical characteristics of the bars were as presented in Table 1. The first natural
frequency was calculated for bar 1. Then the lengths of bars 2, 3 and 4 were selected, as
shown in Table 1, to have the same first natural frequency.

The experimental set-up is shown in Figure 4. Each bar had one fixed and one free end.
An accelerometer of 1 g mass was fixed on the free end of the bar. The bar was set into
free vibration from the initial position by hitting it with a hammer in the z-direction. The
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Figure 3. The material damping factor versus Void (%); Q, experimental results; c/b values for analytical
results: –e–, 0·1; –q–, 0·2; –r–, 0·3; –×–, 0·4; –(–, 0·5; –w–, 0·6; –+–, 0·7; –Q–, 0·8; –Q–, 0·9.

metal response was measured directly at the same position, through the accelerometer. The
output of the latter after amplification was introduced through a Data Acquisition Card
(Omega OMB-DAQBOOK-100/-120/-200) to a PC computer and stored for further
analysis. The sampling frequency was 3–5 kHz.

The vibration Modal Damping Factor z (MDF) was obtained by applying the
logarithmic decrement method [35]. Ten measurements of damping have been performed

T 1

Physical characteristics of measured bars; experimental results

Young’s
modulus Natural Measured

Porosity Length Width Height (N/m2 Density frequency damping
Bar (%) (m) (m) (m) ×1011) (kg/m3) (Hz) factor

1 0 0·3048 0·031 0·003175 2·0 7860 28
2 25 0·25 0·031 0·003175 0·517 5895 28 0·003
3 50 0·17 0·031 0·003175 0·158 3930 28 0·04
4 60 0·19 0·031 0·003175 0·151 3144 28 0·085

Figure 4. The experimental set-up.
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on each bar. Their average was used to yield the difference between the measured damping
of the porous bar and the measured damping of the non-porous bar. This difference
accounts for the porosity only and was compared with the analytical results in the same
sense.

4. CONCLUSIONS

The thermodynamic theory of damping was used to find the material damping due to
the material porosity, which results in an additional damping mechanism due to the
non-reversible flow of heat from areas of higher heat generation to others of lower heat
generation.

The analysis and experiments have been limited to elastic strains and low frequencies,
leading to the production of change in the apparent material damping factor which
depends on the porosity and thus becomes a material and a system property.

Solutions for the infinite solid with an ellipsoidal cavity and constant hoop stress in one
direction only at infinity and a regular lattice of equidistant ellipsoidal cavities in a
rectangular arrangement were employed. Since the additional damping is due to the stress
concentration at the ellipsoidal surface, the assumption was made that one was interested
in small cavities only, as compared with the cavity spacing; thus the effect of the stress
at one cavity upon the stress in the vicinity of another cavity can be neglected. A finite
difference scheme was used to solve the heat conduction equation along well-known lines.
The apparent material damping factor was computed by numerical integrations.

The stress concentration increases as the ellipticity ratio c/b in the direction of the hoop
stress becomes smaller, as shown clearly in Figure 2. The damping factor consequently
increases, as shown in Figure 3. Moreover, increasing Void leads, in the range considered,
to higher damping action.

The stress field about an ellipsoidal cavity in the elastic space with constant stress in
one direction at infinity does not depend on the cavity dimensions: for a very small void
ratio one would expect very little increase in the apparent damping due to the cavities.
It is the interaction, less the stress and more the thermal, that causes the apparent material
damping factor to increase substantially with the void ratio. Thus, in Figure 3 one observes
a nearly linear relationship between the additional material damping factor and void ratio
for low void ratios. For higher void ratios, above about 25%, damping starts increasing
more rapidly.

We have not found a material to conform exactly with the model that we used in the
analysis. The commercially available material that we have found had nearly ellipsoidal
cavities not in a regular spacing but, rather, at random. Moreover, some cavities were
connected, although most were of elliptical shape. Only materials with three different
values of the void ratio were available and they were of high ratios, 25%, 50% and 60%.
Above 40% void ratio, analysis is problematic because the ellipsoidal cavities come very
close to one-another and, in addition to the questionable validity of our assumptions, the
numerical solution seems to be progressively more inaccurate. However, superposition of
the analytical and experimental results showed that the latter agree with the
analytical/numerical results for lower values of the void ratio, but that they become higher,
for higher void ratios.

This analysis can be used in a number of engineering problems: (1) as a continuous
quality control tool for the production of ceramics, glass and similar materials such that
their quality is diminished with even small porosity; (2) as a design tool for the increasing
use of porous materials for reduction of the structure borne noise in automotive, aircraft
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and other applications; (3) in the biomedical field, as part of diagnostic and monitoring
tools for osteoporosis and other conditions of bone loss in the form of increasing porosity.
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